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Abstract
Using a recently obtained (general) formula for the interaction energy between
an excited and a ground-state atom (Sherkunov 2007 Phys. Rev. A 75 012705),
we consider the interaction energy between two such atoms near the interface
between two media. We demonstrate that under the circumstances of the
resonant coupling of the excited atom to the surface polariton mode of a
vacuum-medium system the nonretarded atom*–atom interaction energy can
be enhanced by (several) orders of magnitude in comparison with the van der
Waals interaction energy of the two isolated atoms.

PACS numbers: 12.20.−m, 34.20.Cf, 34.50.Dy, 42.50.Nn

1. Introduction

It has been known for quite some time that the decay rate and energy of an excited atom
(atom*) may be strongly modified near a dispersive and absorbing surface owing to the
resonant coupling of the atom to the surface polariton mode(s) of the system [1–7]. Excitation
of surface polaritons by decaying atom (or molecule) and their subsequent conversion into the
radiation (photons) by some means is in the core of surface enhanced optical processes such
as fluorescence and Raman scattering [8, 9]. Similarly, owing to the resonant energy shift of
the atom, a strong modification of the related atom*-surface van der Waals force leading even
to the atom-surface repulsion has been predicted [1, 3, 4, 6, 7] and observed [10]. In this work
we demonstrate yet another spectacular consequence of the resonant atom*-surface coupling,
namely the possibility of a strong enhancement of the van der Waals interaction between an
excited and a ground-state atom in vicinity of an interface that supports surface modes.

The atom*–atom interaction has so far been considered only for atoms in free-space
[11–16] and lately for atoms embedded in an absorbing medium [17, 18]. A straightforward
way to study this interaction in an inhomogeneous system would therefore be to use a
macroscopic QED approach appropriate for absorbing systems and derive the interaction
potential between the atoms, for example, along the same lines as it was recently done for
two ground-state atoms [19]. However, instead of developing the theory from the beginning,
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in this work we adopt the Sherkunov formula for the atom*–atom interaction potential in an
absorbing medium [18]. Indeed, this formula is given in terms of the corresponding Green
function and there is nothing in its derivation which crucially depends on the specific system
considered in the paper. Accordingly, with the appropriate Green function, it can be applied
to an inhomogeneous medium as well.

2. Theory

Consider an excited (e) atom A and a ground-state (g) atom B embedded in an inhomogeneous
magnetoelectric system described by the permittivity ε(r, ω) and permeability µ(r, ω).
Assuming, for simplicity, two-level isotropic atoms, the vacuum force on the atom A can
then be obtained from the potential

UA(rA, rB) = UA(rA) + UAB(rA, rB), (1)

where

UA(rA) = h̄

2πc2

∫ ∞

0
dξ ξ 2αA

e (iξ) Tr[Gsc(rA, rA; iξ)] −
∣∣dA

eg

∣∣2
ω2

A

3c2
Re Tr[Gsc(rA, rA;ωA)]

(2)

is the Casimir–Polder potential due to the inhomogeneity of the system [3, 6, 7] and

UAB(rA, rB) = − h̄

2πc4

∫ ∞

0
dξ ξ 4αA

e (iξ)αB
g (iξ) Tr[G(rA, rB; iξ) · G(rB, rA; iξ)]

− Re
[
αB

g (ωA)
]
ω4

A

3c4

∣∣dA
eg

∣∣2
Tr[G(rA, rB;ωA) · G∗(rB, rA;ωA)] (3)

is the van der Waals (interaction) potential between the atoms A and B [Reference [18],
equation (68)]. Here

αX
e(g)(ω) = −(+)

2
∣∣dX

eg

∣∣2

3h̄ωX

ω2
X

ω2
X − ω2 − iωγX

, X = A or B, (4)

are the atomic polarizabilities, ωX = (
EX

e − EX
g

)/
h̄ and dX

eg = 〈e|dX|g〉 are the transition
frequency and the dipole matrix element of atom X, respectively, whereas γX is the width of
its excited state [γA = 0+ in (2) and (3) owing to the approaches adopted when deriving these
results]. The dyadic

G(r, r′;ω; ) = G0(r, r′;ω) + Gsc(r, r′;ω), (5)

with G0(r, r′;ω) being the Green function in a homogeneous medium, is the classical Green
function for the system satisfying [I = x̂x̂ + ŷŷ + ẑẑ][

∇ × 1

µ(r, ω)
∇ × −ε(r, ω)

ω2

c2
I·

]
G(ω; r, r′) = 4πIδ(r − r′), (6)

with the outgoing wave condition at infinity.
All information about the mode structure of the system are contained in the scattering

part of the Green function Gsc(r, r′;ω). Specially, poles of this Green function in the complex
ω-plane correspond to frequencies of the system resonant (polariton) modes. Accordingly,
whenever ωA is close to the frequency ωr of a resonant mode UA(rA, rB) is strongly modified
owing to the second (resonant) terms in (2) and (3). Since these terms are absent if the atom
A is in the ground state this effect appears only for excited atoms. Evidently, when ωA ∼ ωr ,
the Casimir–Polder potential UA(rA) exhibits a dispersion due to the atom coupling to the
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Figure 1. Two atoms near an interface shown schematically (atom B’ is the mirror image of
the atom B). Media are described by (complex) refraction indexes n(ω) = √

ε(ω)µ(ω) and
nm(ω) = √

εm(ω)µm(ω).

resonant mode. Simultaneously, in addition of showing the intrinsic (genuine) dispersive type
resonance for ωA ∼ ωB governed by Re

[
αB

g (ωA)
]
, the van der Waals potential is resonantly

enhanced when ωA ∼ ωr owing to the factor |Gij (rA, rB;ωA)|2 in (3). From this factor, we
may infer that the resonant enhancement of UAB(rA, rB) with respect to its free-space value
is due to the exchange of (real) system excitations between the atoms (instead of ordinary
photons, as in the free space [14, 15]) and the associated field-intensity enhancement at atomic
sites [8, 9].

To illustrate the above considerations and estimate the enhancement of the atom*–atom
van der Waals interaction, we assume that the atoms A and B are embedded in a system
consisting of two semi-infinite media, as depicted in figure 1. To account for the local-field
effects, we adopt the Onsager model and therefore also assume small empty spherical cavities
around the atoms. Provided that ωmaxRX/c 	 1, with RX being cavity radii and ωmax > ωX

an effective cutoff frequency in (2) and (3), the Green function for this system can (to the order
of ωRX/c) be written as [20]

Gsc(rA, rA;ω) = i
2ω

3c
C(ω)I + L(ω)G̃sc(rA, rA;ω), (7a)

G(rA, rB;ω) = L(ω)G̃(rA, rB;ω), L(ω) =
[

3ε(ω)

2ε(ω) + 1

]2

. (7b)

Here C(ω) (given explicitly in [20]) is the reflection coefficient for the field scattered within
the cavity and G̃(rA, rB;ω) is the Green function for the system unperturbed by the Onsager
cavities. In order to keep the discussion simple, in this work we consider the situation where
the atomic distances from the interface between the media are small compared to c/ωmax (but
larger than RX) so that the retardation of the electromagnetic field can be neglected. The
Green function for this system in the nonretarded approximation G̃nr(rA, rB;ω) can be found
by adding the nonretarded (quasistatic) field Enr(rA, rB;ω) of an oscillating dipole d at rB

and the corresponding field E′
nr(rA, r′

B;ω) of its image

d′ = r(ω)(−I‖ + ẑẑ) · d, r(ω) = εm(ω) − ε(ω)

εm(ω) + ε(ω)
, (8)

at r′
B = rB‖ − zB ẑ. Here I‖ = x̂x̂ + ŷŷ and r(ω) is the Fresnel reflection coefficient for the

interface in the quasistatic limit. Thus, using [21]

Etot
nr (rA, rB;ω) = ω2

c2
G̃nr(rA, rB;ω) · d (9)
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and equation (7b), we have for the Green function

Gnr(rA, rB;ω) = c2L(ω)

ε(ω)ω2

[
3RR − IR2

R5
+ r(ω)

(3R′R′ − IR′2) · (−I‖ + ẑẑ)
R′5

]
, (10)

where R = rA − rB = R‖ + Zẑ and R′ = rA − r′
B = R‖ + Z+ẑ, with Z = zA − zB and

Z+ = zA + zB .
Combining the nonretarded limit [21] of (5) and (7a) with (10), we find that

Tr
[
Gsc

nr(rA, rA;ω)
] = 6c2

ω2R3
A

ε(ω) − 1

2ε(ω) + 1
+

c2

2ω2z3
A

L(ω)r(ω)

ε(ω)
. (11)

In conjunction with (2), this leads to (we omit the position-independent part of the potential
due to the nearby medium)

UA(rA) = − h̄

4πz3
A

∫ ∞

0
dξ αA

e (iξ)
L(iξ)r(iξ)

ε(iξ)
−

∣∣dA
eg

∣∣2

6z3
A

Re
L(ωA)r(ωA)

ε(ωA)
, (12)

which generalizes a well-known formula for the Casimir–Polder potential of an excited atom
near an interface [3] by including the effect of the surrounding medium.

Similarly, inserting Gnr(rA, rB;ω) in (3), we obtain

UAB(rA, rB) = − h̄

π

∫ ∞

0
dξ αA

e (iξ)αB
g (iξ)

L2(iξ)

ε2(iξ)
W(R‖, Z,Z+; iξ)

− 2
∣∣dA

eg

∣∣2 |L(ωA)|2
3|ε(ωA)|2 Re

[
αB

g (ωA)
]
W(R‖, Z,Z+;ωA),

W(R‖, Z,Z+;ω) = 3

R6
+ |r2(ω)|2 3

R′6 − Re[r(ω)]
3
(
R4

‖ − Z2Z2
+

)
+ R2R′2

R5R′5 . (13)

Here, the first two terms come from the direct interaction between the atoms and the interaction
of atom A with the image of atom B, respectively, whereas the third one is an interference
term.

According to (4), the off-resonant (first) term in (13) is of the same form as the van der
Waals potential between two ground-state atoms. Therefore, referring the reader to [19] for
a detailed discussion of this term, here we pay attention only to the (usually much larger)
resonant part of the atom*–atom potential U r

AB . Using (4), we rewrite U r
AB as

U r
AB(rA, rB) = −2

∣∣dA
eg

∣∣2 |L(ωA)|2
|ε(ωA)|2

αB
g (0)

R6

ω2
B

(
ω2

B − ω2
A

)
(
ω2

B − ω2
A

)2
+ (ωAγB)2

×
[

1 + |r2(ωA)|2 R6

R′6 − 1

3
Re[r(ωA)]

R

R′
3
(
R4

‖ − Z2Z2
+

)
+ R2R′2

R′4

]
. (14)

Evidently, the last factor here describe the modification of the resonant atom*–atom potential
in an infinite medium owing to the presence of the nearby interface. As seen, it is highly
anisotropic and depends not only on the distance of the molecules from the interface but also
on their mutual orientation with respect to it.

3. Discussion

In order to keep the discussion simple, we assume that the atoms are embedded in the vacuum
[ε(ω) = 1] in front of a dielectric medium that is around a resonance at ωT described by the
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Figure 2. Relative interaction potential for parallel (solid line) and perpendicular (dashed
line) orientation of the atoms with respect to the surface at the distance zA = 0.1R from the
atom A as a function of the transition frequency of atom A. Relevant medium parameters are
η = 2.71, ε(0) = 6.57, 	 = 0.015ωS and ωS = 1.54 × 1014s−1 [7]. The transition frequency and
linewidth of atom B are ωB = 0.9ωS and γB = 10−3ωS , respectively.

dielectric function [5]

εm(ω) = η

(
1 +

ω2
P

ω2
T − ω2 − iω	

)
, (15)

where η is a background dielectric constant, ηω2
P is (essentially) the coupling between the

medium polarization and the field and 	 is the corresponding damping constant. We note that
this dielectric function is physically unacceptable generally since it does not tend to unity for
large frequencies. However, it can safely be employed as an effective permittivity in a (finite)
frequency interval around ωT . The reflection coefficient to be used in (14) therefore reads

r(ω) = η − 1

η + 1
+ σ 2 ω2

S

ω2
S − ω2 − iω	

, σ 2 = ε(0) − 1

ε(0) + 1
− η − 1

η + 1
, (16)

where ωS =
√

ηω2
P

/
(η + 1) + ω2

T is the surface-mode frequency. Equations (14) and (16)
explicitly demonstrate the intrinsic dispersion of U r

AB when ωA ∼ ωB and enhancement when
ωA ∼ ωS . Note that for ωB > ωA ∼ ωS (ωB < ωA ∼ ωS) this surface enhanced potential
is attractive (repulsive). It is also immediately seen that when ωA = ωS the potential U r

AB is
enhanced with respect to its free-space value by a factor of

g(R‖, zA, zB;ωS) � σ 4ω2
S

	2

(
1 +

4zAzB

R2

)−3

. (17)

Since for insulators typically 	/ωS ∼ 10−2 and for (noble) metals (η = 1 and ωT = 0)
typically 	/ωS ∼ 10−3, this implies that under the circumstances of resonant coupling of
atom A to the surface polariton mode at nearby surface U r

AB could be enhanced by several
orders of magnitudes.

We illustrate the above considerations in figure 2 where we have plotted U r
AB in units

U 0
AB = 2

∣∣dA
eg

∣∣2
αB

g (0)/R6 as a function of ωA for parallel and perpendicular orientation of the
atoms with respect to the surface. For these orientations of the atoms U r

AB is a (monotonically
decreasing) function of zA/R only and displayed curves correspond to zA = 0.1R. Medium
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Figure 3. Relative interaction potential for parallel orientation of the atoms and for ωB = 0.9ωS

(solid line) and ωB = 1.1ωS (dashed line). Other parameters are the same as in figure 2.

Figure 4. Resonant interaction potential for parallel (solid line) and perpendicular (dashed line)
orientation of the atoms for ωA ∼ ωB = ωS . Other parameters are the same as in figure 2.

parameters are chosen from [7] and correspond to sapphire around the surface polariton
resonance at λS = 12.21 µm whereas parameters of the atom B are chosen quite arbitrarily.
We see that, besides a resonant structure at ωB as would exist in the free-space, the potential
exhibits also a resonance at the surface mode frequency ωS implying a strongly surface
enhanced interaction between the atoms. For example, we find that U r

AB in the parallel
geometry is at the surface mode resonance 298.5 times larger than in the free space. We
note that this is in a very good agreement with g(R‖, zA, zA;ωS) calculated from (17) for
zA = 0.1R.

Of course, for ωB > ωS ∼ ωA, the surface enhanced potential is attractive, as illustrated
in figure 3 where we have plotted U r

AB in the parallel geometry for two symmetric values of
ωB with respect to ωS . The largest enhancement is, however, obtained when ωA ∼ ωB ∼ ωS .
This ‘double resonance’ case is illustrated in figure 4, where we have plotted U r

AB in the
parallel (solid line) and perpendicular (dashed line) geometry for ωA around ωB = ωS . We
see that just below (above) the double resonance the attractive (repulsive) part of the potential
is additionally considerably enhanced (note the change of scale on the ordinate axes).

6
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Figure 5. Relative perpendicular force on atom A for parallel orientation of atoms A and B with
respect to the sapphire surface. The distance of atom A from the surface is zA = 3[αB

g (0)]1/3

and the distance between the atoms is R = zA (solid line) and R = 5zA (dashed line). Other
parameters are the same as in figure 2.

We end this discussion by a short comment on the force on the atom A

FA(rA, rB) = −∇AUA(rA, rB) (18)

around the surface mode resonance. Keeping only the (most) resonant terms in (12) and (13),
we find for FA [ε(ω) = 1]

FA(rA, rB) � −ẑ

∣∣dA
eg

∣∣2

2z4
A

Re[r(ωA)] − R′ 12
∣∣dA

eg

∣∣2

R′8 Re
[
αB

g (ωA)
]|r(ωA)|2, (19)

where r(ω) is given by the resonant term in (16). Introducing the function

L(x, y, z) = x4[(x2 − y2)2 + (yz)2]−1, (20)

we rewrite FA at ωA � ωS in components as

FA‖(rA, rB) � −R‖
12

∣∣dA
eg

∣∣2
αB

g (0)

(R2 + 4zAzB)4

(
1 − ω2

A

ω2
B

)
L(ωB, ωA, γB)σ 4L(ωS, ωA, 	) (21a)

FAz(rA, rB) � −
∣∣dA

eg

∣∣2

2z4
A

σ 2L(ωS, ωA, 	)

[
1 − ω2

A

ω2
S

+ 24
z4
A(zA + zB)αB

g (0)

(R2 + 4zAzB)4

(
1 − ω2

A

ω2
B

)
L(ωB, ωA, γB)σ 2

]
. (21b)

As seen, because of the presence of the atom B, FA acquires a parallel component and its
perpendicular component is diminished or enlarged owing to the relative positions of the
atomic and surface resonances.

The above considerations are illustrated in figure 5 where we have plotted FAz(ωA) in
units F 0

A = ∣∣dA
eg

∣∣2/
2z4

A for parallel orientation of atoms A and B with respect to the surface
and for two values of the parameter R/zA. The distance of atom A from the surface is fixed
letting zA = 3

[
αB

g (0)
]1/3

; for αB
g (0) in the range of polarizabilities of the alkali-metal atoms

[� (2 − 6) × 10−23 cm3 [22]], for example, this corresponds to zA ∼ 1 nm. As follows from
(21b), under these circumstances the atom-atom component of the force decreases rapidly
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with the relative distance between the atoms R/zA so that the dashed line practically coincides
with the purely Casimir–Polder (atom-surface) force given by the first term in (21b). When
the atoms are closer (solid line), owing to its strong repulsion from the atom B for ωA ∼ ωS ,
the force on atom A is diminished/enhanced in the attractive (ωA < ωS)/repulsive (ωA > ωS)

atom-surface force region. Of course, for ωB > ωS the situation is reversed: due to the
attraction between the atoms around the surface resonance FAz(ωA) is enhanced/diminished
in the attractive/repulsive atom-surface force region. The same effect is also observed for
the perpendicular orientation of atoms with respect to the surface, however, owing to the
attenuation od the surface-mode field away from the surface, in this case it is much weaker.
Evidently, this effect is reinforced when the atoms are closer to the surface and to each other
and disappears for large zA and/or R.

4. Conclusions

In conclusion, we have demonstrate that the (generalized) Sherkunov formula implies a strong
enhancement of the van der Waals atom*–atom interaction near a vacuum-medium interface
under the circumstances of the resonant coupling of the excited atom with the surface mode of
the system. The enhancement is due to the exchange of (real) surface excitations between the
atoms (instead of photons) and the accompanying enhancement of the electromagnetic field
intensity at atomic sites. This promotes the van der Waals interaction as another example of
the surface enhanced phenomena.
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